欢迎光临济南企家顺环保科技有限公司官网

环保设备厂家-废气处理设备厂家-济南企家顺环保科技有限公司

废气处理设备实力制造商
为企业可持续发展保驾护航

全国咨询热线: 13075349934
当前位置:主页 > 新闻动态 > 常见问题解答 >

挥发性有机物 (VOCS )活性炭吸附回收技术综述

作者:白羊 人气:发表时间:2019-12-24
挥发性有机物 (VOCS )活性炭吸附回收技术综述
 
 
摘要:随着我国经济建设的发展, 各类有机溶剂的应用越来越广, 有机废气的排放量也随之逐年增加, 其所带来的空气污染等环境问题已经引起全世界的关注。过去, 研究人员主要致力于开发高效的VOCS控制技术。随着我国建立可持续社会目标的提出, 越来越多的人开始关注经济有效的 VOCS回收方法。本文重点介绍了活性炭吸附回收VOCS的工艺现状和研究进展, 并预测了VOCS分离回收技术的发展趋势。
 
石油加工、工业溶剂生产 、化工产品生产 , 以及有机物料的储运等过程都会产生挥发性有机物VOCS。VOCS种类繁多 , 多数有毒 , 危害人类健康 ;参与形成光化学烟雾和气溶胶, 污染环境 ;卤代烃类有机物可以破坏臭氧层 。VOCS污染问题已经引起世界的高度重视, 美、 日、 欧盟多年前即执行了严格的VOCS排放标准 , 中国作为发展中国家 , 目前首要考虑的是解决VOCS污染问题 , 对于VOCS的回收关注不多。但是, 若能经济有效地回收VOCS, 特别是高浓度 、 高价值的VOCS, 具有环境、 健康 、 经济三种效益, 对于推动我国循环经济的发展和社会可持续发展意义重大。以油品为例, 我国每年蒸发损失的轻质油约 4.7 ×105 t, 如 果进行油气回收可以减少损失约4.35 ×105t, 其价值约合人民币2 ×109 元[ 1] 。可以预计 , 未来几年 , VOCS的回收将越来越受重视。目前 , VOCS的回收方法主要有:吸收法 、吸 附法 、 冷凝法和膜分离法, 通常将吸附与冷凝法连用, 吸附剂首选活性炭 , 因为活性炭具有吸附能力强, 耐酸碱、 耐热 , 原料充足 、易再生的优点, 一般流程为:吸附、脱附 、冷凝回收 。


 
一、活性炭吸附 VOCS
 
1.1 活性炭吸附 VOCS的工艺 
 
耗巨大, 因而目前多采用变温吸附 , 变温吸附又以固定床居多, 因为固定床吸附效率高, 设备简单, 工艺相对成熟 。
 
1.2 活性炭吸附回收 VOCS的研究热点 
 
1.2.1 吸附剂的改性 
 
吸附分离效果的关键在于吸附剂性能 , 目前 , 研究热点主要有两个:开发具有特殊性能的活性炭, 如纤维活性炭和木质活性炭;对活性炭进行改性, 调整活性炭孔隙结构, 提高对特定吸附质的吸附能力或降低脱附要求 。常用的改性方法有氧化 、还原及负载杂原子和化合物等 。氧化改性法使用 HNO3 、 H2 SO4 、 HCl、 HClO、 HF、 H2 O2 和 O3 等 强氧化剂处理活性炭表面 , 提高酸性基团的含量 。 Chiang等对活性炭进行臭氧氧化后使活性炭的表面积从783 ±51 m2 /g增加到851 ±25m2 /g, 显著增加了苯吸附量[ 14] ;黄正宏等采用H2 O2和浓HNO3 对椰壳活性炭进行湿氧化 , 增强了苯吸附能力 。还原改性是对活性炭进行 H2 、 N2 高温处理或氨水浸渍, 提高活性炭表面碱性基团的含量。如高尚愚采用还原法对活性炭进行改性, 增强了其对苯酚的吸 附能力。负载杂原子及化合物则是通过液相沉积的 方法在活性炭表面引入特定杂原子和化合物 , 增加 活性炭的吸附性能。 Chiang采用 Mg(NO3 )2 和 Ba(NO3 )2处理活性炭 , 增加了醋酸的吸附容量 ; 李德伏将活性炭浸渍在 Cu(NO3 )2 水溶液中, 增强了活性炭吸附乙烯的能力[ 15] 。还有学者使用高沸点物质处理吸附剂 , 降低了对脱附条件的要求[ 16] 。
 
1.2.2 吸附平衡的预测 
 
吸附容量是选用吸附剂的重要参考依据 , 对吸附平衡的测量和预测一直是研究重点。目前 , 描述气 -固吸附平衡等温线较为成熟的模型和方程有Langmuir方程 、 Freundich等温方程 、 D-R方程和 D-A方程等。现在, 许多学者试图在各自实验研究 的基础上建立适用于不同 VOCS的吸附模型。 Kye等人研究了活性炭固定床对亚甲基氯蒸气 的吸附情况 , 用 Langmuir方程进行关联实验数据 , 采用非平衡非绝热状态的数学模型预测吸附、 解吸 过程中浓度和温度的变化 , 利用该模型可以确定初 始床温 、 洗涤气温度等操作参数[ 17] 。 
 
Yun等建立了非平衡 、 变温 、 不绝热情况下活性炭固定床吸附苯的模型 , 与实验结果吻合程度很高 。可使用该模型分析停留时间 、气速 、再生温 度 、 床层负荷对于再生速率的影响。 
 
Jeong等考察了活性炭在压力为 2MPa, 不同温 度下对 H2 、 CH4 、 C2H4 纯组分、 两两混合及三组 分混合气体的吸附能力, 并用 Langmuir, Langmuir- Freundich(L-F)方程和 Flory-Huggins模型 (F-H VSM)关联了吸附数据, 结果表明 L-F和 F-HVSM 与实验结果的吻合程度更高。混合组分的吸附平衡 则可使用扩展的 Langmuir、 L-F、 IAST及 VSM预 测[ 19] 。
 
Gales等人采用活性炭变温变压吸附系统回收丙酮、 乙酸和乙醇蒸气, 建立了变温 、 不绝热 、 非平衡状态下活性炭吸附的数学模型[ 20] 。
 
Chuang等人假设吸附与解吸同时发生, 将非线性驱动力与 Langmuir模型联立后建立模型, 该模型可以成功预测各种情况下的吸附等温线和穿透 曲线[ 21] 。 
 
宁平等通过实验建立了固定床活性炭吸附甲苯与低浓度三氯乙烯的数学模型 , 与实验结果吻合良好 , 可用于预测其它条件下的穿透曲线[ 22] 。 李国文等研究了柱状活性炭对甲笨的吸附性能 。根据吸附穿透曲线, 求得活性炭吸附容量和传质区高度, 并用 Moment理论处理吸附过程 , 得到了活性炭吸附甲苯的理论穿透曲线模型[ 23] 。 
 
金一中等研究了苯、甲苯混合溶剂的吸附平衡关系及动力学性质。采用动态吸附法对纯组分 、 混合组分的吸附情况进行了测定 。根据 Langmuir方程拟合出相应的平衡常数 qe和 K。分别利用E-L 方程和IAST理论进行预测分析, 并与实验结果进行了比较。结果表明 , 虽然E-L方程对吸附总量的预测与实验结果较为吻合 , 但对各组分吸附量的预测却经常产生偏差;而IAST引入竞争模型 , 较好地消除了偏差, 平均误差不超过10%[ 24] 。 
 
1.2.3 吸附过程的影响因素
 
VOCS的性质 , 如分子量 、沸点 、偶极距及浓度;混合气体成分如共存有机蒸气 、水蒸汽 、氧气 等都会影响 VOCS的吸附容量。
 
VOCS的分子量越小 、 挥发度越高, 穿透速度 越快 , 越不利于吸附操作。高瑞英等的研究发现活 性炭吸附同浓度的苯、 甲苯、 二甲苯时 , 穿透时间随着有机物偶极距的增大而增大, 表现为二甲苯 > 苯 >甲苯 , 原因是偶极距大的气体分子和样品表面的结合力越强 , 吸附容量大, 所以易液化或沸点高的气体在同样条件下更易被吸附[ 25]。Chiang等考察了三类活性炭对四种 VOCS (四氯化碳、 氯仿 、 苯、 二氯甲烷 )的吸附能力, 发现对吸附热高 、 熵变低的苯的吸附效果最好[ 26] 。 
 
国内罗宏慧等的研究结果表明混合气体的物质种类越多 , 穿透容量降低越严重, 两种有机蒸气共吸附时丙酮的穿透容量下降 21.9%, 四种时则减少到 41.7%[ 27] 。高瑞英等发现苯与甲苯的混合物比同浓度苯、 甲苯的穿透时间长, 且混合物在活性 炭上的吸附不等同于几种吸附质的简单加和 , 吸附能力强的甲苯能从活性炭中置换出吸附能力弱的苯[ 25] 。 Marcu[ 28] 、 高华生[ 29] 等人都考察了水蒸汽 对活性炭吸附过程的影响:水分子层的覆盖导致活 性炭对极性较强的挥发性有机物的亲和力减小, 水蒸汽含量越高影响越显著。 Reucroft[ 30]的研究结果 表明 :湿度对高浓度有机蒸气的影响较小, 对于低 浓度有机蒸气影响较大 , 并随着湿度的增大和有机 蒸气浓度的降低而增大 。 PerryJCerminara[ 31] 等人 指出 :氧分子会与有机物分子竞争吸附位, 降低活 性炭对有机物吸附能力 。 
 
二、 VOCS的冷凝
 
利用 VOCS在不同温度和压力下具有不同饱和蒸气压的性质, 降低系统温度或提高压力, 使VOCS从废气中分离 , 特别适用于回收气量小 、 浓度高 (≥1000ppm)、 沸点高于 38℃的有机蒸汽 。 该法设备和操作条件比较简单 , 回收物质的纯度较 高, 但是传统冷凝法一般采用水作为冷却剂 , 由于水与环境温度相差不大 , 故只适用于回收高浓度 、 高沸点的VOCS, 若要回收低沸点 、 低分子量的有机物 , 则需对水进行降温 , 增大了能耗和运行费 用[ 39] 。
 
近年来又出现半导体制冷和液氮冷凝等新型冷却法 , 它们体积小、 制冷迅速、 冷量调节范围宽 、 无机械运动及冷热转换快, 应用前景广阔。谢兰英等使用半导体制冷器对三种VOCS进行冷凝实验 , 只需 1.5min就可以把 115℃的VOCS气体冷却至 -10℃[ 40] 。 VineetKGupa等人对双组分 VOCS 混合气体进行了液氮冷凝, 结果表明该法可以适应 VOCS浓度的大范围变化, 将 VOCS的排放浓度降低 到 ppbv级, 且使用后的氮蒸气可用于其它工艺[ 41] 。
 
三、总 结
从目前的技术发展趋势可以预测 :
 
1、 正如美国 EPA所指出的 , 活性炭吸附是去除 VOCS “可采用的最好技术 ”。特别是活性炭固定床 吸附变温再生技术适合我国现有的经济、 技术水平 , 且回收纯度高 , 将成为未来发展的主流。设计 、 制造具有更佳吸附性能或满足特定需求的新型活性炭 , 寻找行之有效的活性炭表面改性方法 ;加强对活性炭吸附过程影响因素的研究 , 提高吸附效率 ;强化 VOCS吸附分离过程的计算机模拟和智能控制, 实现吸附与脱附的连续操作, 将是近期主要的研究课题 。
 
2、 活性炭流化床传质阻力小 、 处理气量大 , 传热好, 若能解决床层返混 、 设备磨损等问题, 就可以得到广泛的应用。 
 
3、 微波、 超声波等新兴解吸脱附方式可以显著降低吸附分离过程的能量消耗 , 也是未来的一个研 究热点 。 
 
4、 开发汇集冷凝、 吸收 、 膜分离 、 变压吸附等工艺的组合流程 , 扬长避短, 也将成为VOCS回收技术的趋势 。

推荐产品

同类文章排行

最新资讯文章